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Abstract

The systems that statisticians are asked to assess, such as nuclear
weapons, infrastructure networks, supercomputer codes, and muni-
tions, have become increasingly complex. It is often costly to conduct
full system tests. This paper focuses on four methodological issues
that arise in this context: combining multiple data sources to assess
the reliability of a single component, combining multi-level data to
assess system reliability, Bayesian network and flowgraph system rep-
resentations, and resource allocation for system assessment.

1 Introduction

By definition, reliability is the probability a system will perform its intended
function for at least a given period of time when operated under some spec-
ified conditions. The systems that we are asked to assess are becoming in-
creasingly complex, including, for example, nuclear weapons, infrastructure
networks, supercomputer codes, and munitions. In many instances it is not
possible to mount vast numbers of full system tests, and frequently none are
available (Bement et al. 2003). Systems reliability methodology is faced with
the challenge of developing models for these complex systems and integrating
multiple, sometimes indirect, sources of information to perform estimation,
make inferences, and answer questions about the allocation of additional
testing resources.

This paper focuses on four methodological issues that arise from complex
systems reliability problems. In Section 2, we address methods for integrat-
ing multiple data sources to assess the reliability of a single component. The
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data may come from many sources, including experimental test results, com-
puter simulations, and expert opinion. In Section 3, we consider methods
for assessing systems reliability when the data are available at multiple levels
(e.g., both system and component). Again, there may be multiple sources
of data at each component or at the system itself. In Section 4, we discuss
Bayesian networks and flowgraph models, which are richer representations
that are able to model more systems than fault trees or reliability block di-
agrams can. In Section 5 we consider the resource allocation problem for
systems. Section 6 summarizes our view of some of the current research
challenges in systems reliability assessment.

The analyses presented here follow hierarchical Bayesian approaches and
focus on estimating reliability R(t), in most cases as a function of time.
We will write R(t|Θ) to denote reliability given unknown parameters Θ,
and after obtaining a posterior distribution π(Θ|D) for Θ based on data D,
estimates of R(t) can be obtained from, for example, the posterior mean∫

R(t|Θ)π(Θ|D)dΘ. In each example we use these meanings for R,π, Θ, and
D.

2 Integrating Multiple Data Sources to As-
sess Component Reliability

In this section, we consider the assessment of component reliability when
multiple data sources are available. Ideally, we would like a large set of
pass/fail tests or failure time observations to estimate the reliability of a
component. We are often in situations where this is not the case, but we
are able to supplement our data with other information sources. In this sec-
tion, we consider specifically degradation data, surrogate data, and a biased
sample of pass/fail data.

2.1 Degradation and Failure Time Data

An important practical example is the case where failure time data are aug-
mented with degradation data. Suppose that we are interested in the lifetime
distribution of a component. In the past we have observed n1 failures at times
Tj for j = 1, . . . , n1. A further n2 components are still functioning, and their
ages are Aj for j = n1 +1, . . . , n1 +n2. Finally, n3 components were destruc-
tively tested, and these tests yielded the continuous measurements Yj at ages
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tj for j = n1 + n2 + 1, . . . , n1 + n2 + n3. The Yj tend to decrease with age,
and it is thought that this decrease is closely related to the eventual failure
of the components.

We seek to analyze these data simultaneously using a hierarchical Bayesian
approach by first assuming that the degradation process satisfies

Yj ∼ Normal(α − β−1
j tj,σ

2
y).

This assumption implies that components are identical at birth, although
measurement error is present even when testing new units. Differences in
components arise later as each is allowed to degrade at its own rate β−1

j , and
we assume that log βj ∼ Normal(µ,σ2

b ). We estimate both µ and σb; µ has
a normal prior distribution and σb has a gamma prior distribution. σy is
the measurement error standard deviation and is also given a gamma prior
distribution. To relate this degradation process to the failure times, assume
that a critical lower level L exists, and that

Tj = inf{t ≥ 0 : α − β−1
j t ≤ L} = (α − L)βj,

so that log Tj ∼ Normal(µ + log(α − L),σ2
b ). In this problem the reliability

is defined to be the survivor function of a generic lifetime T , P{T > t}. L
can be given a prior distribution and estimated; in most cases the value of
the degradation process that is required for successful performance will be
approximately known, so that this prior distribution will be informative. We
assume that L/α ∼ Beta(a, b). The lognormal distribution for Tj defines the
likelihood for both the censored lifetimes and the observed lifetimes. This
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yields the unnormalized posterior distribution

π(Θ|D) = π(α, β,σb, µ,σy,L|T,A,y) ∝

φ(
α − mα

sα
)φ(

µ − sµ

sµ
)σ

aσy−1
y exp(−rσyσy)×

σ
aσb−1
b exp(−rσb

σb)α
−1

(
L

α

)a−1(α − L

α

)b−1

×
n1∏

j=1

(
(σbTj)

−1φ[{log Tj − µ − log(α − L)}/σb]
)
×

n1+n2∏

j=n1+1

(
1 − Φ[σ−1

b {log Aj − µ − log(α − L)}]
)
×

n1+n2+n3∏

j=n1+n2+1

[
(σbβj)

−1φ{(log βj − µ)/σb}σ−1
y φ({yj − α − β−1

j tj}/σy)
]
, (1)

where φ and Φ denote the standard normal density and distribution functions
respectively, and where mα, sα,mµ, sµ, sσy , rσy , sσb

, rσb
, a and b denote fixed

quantities that define prior distributions for α and other parameters. Samples
from this unnormalized posterior distribution can be drawn using a variable-
at-a-time random walk Metropolis algorithm, as implemented in YADAS
(Graves 2003b).

As an example, consider a simulated population of items at time 20 years
after fabrication. We have observed four failures, all in the last two years,
and 76 items have survived to this point. We also have one degradation
data point per year up to year 20. The data were simulated under α = 100,
L = 20, and µ = log(0.35) = −1.05; this implies that the degradation curve
will cross level L at age 0.35(100 − 20) = 28 years. Other parameters of
the simulation include σb = 0.2 and σy = 5. In our prior distributions,
we used α ∼ Gamma(4, 1/30) (with mean 120), σy ∼ Gamma(4, 1/2.5),
σb ∼ Gamma(4, 5), µ ∼ Normal(0, 1), and L/α ∼ Uniform(0, 1). The results
are shown in Figure 1. The solid black curve is the true reliability (survivor

function) R(t), the dashed blue curve is
∫

Φ
(

µ+log(α−L)−log t
σb

)
π(Θ|D), the

posterior mean of the survivor function, and the dotted red curves are the
5th and 95th percentiles of the posterior distribution. There is substantial
uncertainty in the reliability just a few years into the future, but this is con-
siderably better than could be obtained using the (mostly censored) failure
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times alone. Posterior estimates (and 90% posterior probability intervals)
for the parameters are 99.1 (92.9, 104.9) for α, 17.2 (2.7,31.8) for L, -1.00
(-1.21, -0.75) for µ, 6.56 (4.04, 9.93) for σy, and 0.24 (0.15, 0.35) for σb. This
approach has the advantage that the threshold parameter L does not need to
be known with certainty and can be estimated; doing so can provide a diag-
nostic for the value historically assumed for L. The approach can also benefit
from strong prior information about L, which might come from physical or
engineering knowledge used to define the requirements for the component.
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Figure 1: Reliability estimates with uncertainty bands for degradation and
failure time data integration example. The solid curve is the true reliability
function, the dashed curve is the posterior mean, and the dotted curves are
the 5th and 95th percentiles of the posterior distribution.

2.2 Bernoulli and Quality Assurance Data

Anderson-Cook et al. (2005) apply ideas from medical statistics to combine
pass/fail data with component quality assurance data to get more precise
reliability estimates. Anderson-Cook et al. (2005) actually work in a system
context but here we discuss the single component variant of the problem; see
Section 3.2 for the system extension. A component undergoes destructive
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pass/fail testing at various ages; suppose that age is the only covariate of
interest, although the model is general enough to allow multiple covariates.
Further suppose that the component can also be tested destructively for ad-
herence to up to J published specifications. We assume that each such test
related to the jth specification (j = 1, . . . , J) yields (possibly after transfor-
mation) a normally distributed measurement with mean αj +δjt and variance
γ2

j , if the test is conducted at age t. It is thought that these specification
measurements are related to the component’s performance in a pass/fail test,
and we assume that the measurements have been transformed so that large
values of the measurement are thought to be good. We now invoke an as-
sumption to relate the two types of data. This assumption is inspired by the
concept of surrogate variables in medical studies (Prentice (1989) and Pepe
(1992)). Suppose that it were possible to obtain a system test Y on the same
unit where we obtained a full set of specification measurements Z1, . . . , ZJ ;
then we assume

Pr{Y = 1|Z, t} =
J∏

j=1

Φ

(
Zj − θj

σj

)
,

independently of t. In this model, each of the J quantities represented in spec-
ifications are independently capable of causing failure, and it is not possible
for, for example, two quantities with somewhat low values to collaboratively
cause failure. If the latter behavior is desired, it is possible to replace the
product with a multivariate normal integral. Here θj and σj are unknown,
given prior distributions, and estimated. Their prior distributions can be
informative if the published specifications are thought to be highly relevant
to reliability. The key result, since it is impossible to observe the Zj for a
component that undergoes pass/fail testing, is that the Zj can be integrated
out, so that

R(t|Θ) = Pr{Y = 1|t, Θ} =
J∏

j=1

Φ



αj + δjt − θj√
γ2

j + σ2
j



 . (2)

Terms like this can be multiplied by normal density terms reflecting the
specification measurements in order to combine the two sources of data.
Assuming that the data consist of system tests Y1, . . . , Ym taken at ages
t1, . . . , tm, and spec measurements Z1, . . . , Zn taken at ages τ1, . . . , τn, where
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measurement Zi corresponds to the kith spec, the likelihood function is

L(α, δ, γ,σ, θ|Y,Z) =
m∏

i=1

p(ti)
Yi{1−p(ti)}1−Yi×

n∏

j=1

σ−1
kj

φ

(
Zj − αkj − δkjτj

σkj

)
.

2.3 Biased and Unbiased Samples

Graves et al. (2003) discuss a challenging problem whose solution could be
applied in a reliability context because it involves the estimation of preva-
lence of a feature in a stratified population. A population of items was
manufactured in lots, and it was of interest to estimate the fraction of items
in each lot with a certain feature. There was reason to believe that feature
prevalence had a nonzero, but imperfect, relationship with lot membership,
so the authors assumed that, if the jth lot was of size Nj, the number of
features Kj in the lot had a Binomial(Nj, pj) distribution, where the pj had
a hierarchical prior pj ∼ Beta(a, b), with a and b given prior distributions.
Some of the lots were inspected using random (hypergeometric) sampling; a
sample of size nr

j were taken from the jth lot for inspection, and yr
j features

were found. These data alone can be analyzed using an MCMC algorithm
to obtain samples from the joint distribution of (a, b,p,K). However, some
other feature data were available from items selected using nonrandom sam-
pling (a “convenience sample”); the selection process may or may not have
been independent of feature presence. To combine these two sources of data
one needs to model this nonrandom sampling, and Graves et al. (2003) used
the extended hypergeometric distribution. In fact, the convenience samples
were taken before the random samples. Denote by nc

j and yc
j the sample size

and number of features found from the j lot in the convenience sample. Then
the extended hypergeometric model is

P (yc
i = y) =

(
nc

i

y

)(
Ni − nc

i

Ki − y

)
θy

∑min(nc
i ,Ki)

j=max(0,nc
i−Ni+Ki)

(
nc

i

j

)(
Ni − nc

i

Ki − j

)
θj

.

When the unknown biasing parameter θ = 1, this is the hypergeometric
model, and for θ > 1 items with the feature are more likely to be sampled,
etc. Graves et al. (2003) assumed that the amount of biasing is constant in
each lot (θ does not depend on the lot), put a lognormal prior distribution
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on θ, and estimated the amount of biasing; their data set turned out to be
inconclusive about the direction of the bias. The likelihood for the randomly
sampled data is

yr
i ∼ Hypergeometric(Kr

i , N
r
i − Kr

i , n
r
i ),

which is to say

P (yr
i = y) =

(
nr

i

y

)(
Ni − nr

i

Ki − y

)

(
Ni

Ki

) ,

where N r
i = Ni − nc

i and Kr
i = Ki − yc

i . Graves et al. (2003) sampled from
the resulting posterior distribution of (p,K, a, b, θ) using YADAS. Integrat-
ing the convenience samples with the randomly sampled data enabled a more
precise estimate of the quantity of interest, the prevalence of features among
the unsampled items, f((K) =

∑
i(Ki − yc

i − yr
i )/
∑

i(Ni − nc
i − nr

i ), without
making unwarranted assumptions such as the prevalence of features being
the same in each lot or the convenience sampling being done independently
of feature presence. In a simplified case where items lacking the feature have
reliability one and items with the feature have reliability zero, the poste-
rior mean reliability is the integral of f(K) with respect to the posterior
distribution of K.

Further study is required before one can recommend using a more infor-
mative prior for the amount of bias θ. It is difficult to relate the parameter
to knowledge about the sampling process in a quantitatively precise manner.
If the biasing mechanism is better understood, that mechanism should be
explicitly included in the model rather than the approach given here.

3 Assessing System Reliability with Multi-
Level Data

In Section 2, we discussed combining multiple data sources to assess a single
component. In this section, we consider combining multiple sources of data in
a system reliability assessment. In particular, we consider situations where we
have data both about components and about combinations of components—
for example, about the entire system. Hamada et al. (2004) develops models
for the case of a fault tree with binary data at basic, intermediate, and top
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events. Here we give examples of combining failure time data, failure count
data, Bernoulli data, and degradation data.

3.1 Logistic Regression, Weibull Lifetimes, and Degra-
dation

As an example of integrating multi-level reliability data, we work with a
variant of an analysis discussed in Graves and Hamada (2005). The system
consists of three components combined in series, and all three components
may see degrading performance with age. For component 1, we have binary
test data at various ages and we assume a logistic regression relationship
for the success probability as a function of age. If X1 denotes a generic
component 1 of age t and X1 = 1 denotes component success,

logit Pr{X1 = 1} = θ0 + θ1t.

We assume independent normal priors for θ0 and θ1, and in our simulated
data, we have 25 tests each at ages 0, 2, 4, 6, 8, 10, 15, and 20, with one
failure at age 4, two at age 15, and six at age 20.

Component 2 is assumed to have a Weibull lifetime distribution with

Pr{T2 > t} = exp(−λ0t
λ1),

where T2 denotes a generic lifetime for component 2. Component 2 is said to
work properly in a test if its life has not yet ended at the time it is tested.
We observe eight uncensored lifetimes ranging from 14.1 years to 33.5 years,
with 13 lifetimes right-censored at 20 years and four right-censored at 40
years.

Our data for component 3 mirrors the analysis in Section 2.1; we have 10
total pieces of degradation data taken every two years (these data are normal
with mean α + β−1

j tj and variance σ2
y, with log βj ∼ Normal(µ,σ2

b )) and 80
lifetimes, all but two of them censored at twenty years. (The logs of these
data are normal with mean µ + log(α − D) and variance σ2

b ). This time, we
assume that D = 20 is known with certainty. Finally, we also have binomial
system test data (15 tests each at ages 0, 5, 10, 15, and 20, with one failure
at age zero and three at age 20). Since this is a series system, the probability
of system success for a system of age t is then

R(t|Θ) = logit−1(θ0 + θ1t)× exp(−λ0t
λ1)× {1−Φ({log t− µ− log(α −D)}/σb)}.

9



The component data sets can be analyzed together with the system data
by multiplying all the likelihood functions with the prior distributions for
all the unknown parameters. Again, samples from the posterior distribution
can be drawn using a variable-at-a-time random walk Metropolis algorithm,
and setting up the problem is straightforward in YADAS (Graves 2003b).
YADAS can handle much larger systems (for example, Johnson et al. (2003)
for the case of pass/fail data with no aging at all levels). The user can
specify the system structure in a file and component data can take many
forms, assuming only that the user can express the success probability at
each component as a function of unknown parameters. Figure 2 displays
the results of the analysis. For each component and for the full system, we
display the mean and 5th and 95th percentiles of the posterior distribution
of reliability as a function of age. Component 2 dominates the unreliability
at early ages, while the other two components are bigger concerns at later
ages.
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Figure 2: Reliability estimates and uncertainty intervals for three component
system. Upper left: component 1, which has logistic regression data. Upper
right: component 2, with Weibull failure time data. Lower left: component
3, with both degradation data and lognormal failure time data. Lower right:
the full series system with all four data sets.
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3.2 Combining Partially-Informative System Tests with
Component Tests

Anderson-Cook et al. (2005) analyze data from a system in which the system
pass/fail testing data provide incomplete information about which compo-
nent(s) was responsible for a failure. In particular, for the ith test, the data
consist of a set C1(i) of components are known to have worked, a second
set of components C2(i) that are known to have failed, and a third set of
components C3(i), where it is known that at least one component in that set
failed. Anderson-Cook et al. (2005) do this in the context of combining these
system tests with component specification testing data (see Section 2.2). In
a multiple component context, denote by pik the probability in (2) that com-
ponent k works properly in test i. Then the probability of observing data
(C1(i), C2(i), C3(i)) given these component success probabilities is





∏

k∈C1(i)

pik










∏

k∈C2(i)

(1 − pik)









1 −
∏

k∈C3(i)

pik




 ,

where the third product is understood to equal zero if it is empty (the other
products are one if empty). Results obtained by Anderson-Cook et al. (2005)
for a two-component series system are shown in Figure 3. Denoting by
Ri(t|Θ) the reliability of component i given in expression (2), the poste-
rior mean system reliability is

∫
R1(t|Θ)R2(t|Θ)π(Θ|D)dΘ. Since the data

are proprietary, both axes (time and reliability) have been rescaled to [0, 1].
The black curves show the integration of the two types of data (posterior
means, 5th and 95th percentiles of the posterior distribution). The solid and
dashed curves show the previous methodology used by the system engineers:
logistic regression using full system data only. The component test data are
in this case available for older components, which greatly tightens the un-
certainty bounds for older systems (dotted lines). (This analysis depicts a
small subsystem of the full system, and none of the components in the small
subsystem appear to age significantly.)

This is a form of “autopsy data.” Meilijson (1994) uses the EM algo-
rithm to obtain maximum likelihood estimates for failure time distribution
parameters from the failure time of the system and the set of components
that failed by that time. G̊asemyr and Natvig (2001) work with lifetime
data where the set of failed components is identified when the system fails,
and some components are monitored either at all times or from certain time
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System Reliability Estimates
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Figure 3: Comparison of Two Reliability Estimation Procedures. Solid and
dashed lines: integration of component specification tests and partially in-
formative system tests. Dotted lines: logistic regression on full system data
alone. Shown are posterior medians and 5th and 95th percentiles of posterior
distributions.

points onwards (if a component fails while being monitored, its failure time is
observed exactly). They also observe systems that did not fail before a cen-
soring time. They derive expressions for the likelihood function under general
system structures, including the case of dependent failures, and identify con-
jugate prior distributions in the case that failure times follow generalized
gamma distributions.

3.3 Nonhomogeneous Poisson Process

Highly clustered modern supercomputers are examples of systems composed
of many similar systems in series. Ryan and Reese (2005) present a model for
the reliability of a Los Alamos National Laboratory supercomputer consisting
of 48 highly similar computers. While they are often referred to as “massively
parallel,” a job that begins on n = 48 components in a cluster will finish only
if all n components function correctly for the duration of the computational
task. Essentially, these 48 computers behave as 48 repairable systems in

12



•
• • • • • • • • • • • • •

•

•
•

• • • •
•

• • • • • • • •

•
•

• • • • • •
• • • • • •

•

•
• • • • • •

• • •
• • • •

•

• • • • • • •
• • • • • • • •

•
•

• • •
• •

• • • •
• • •

•

•

•
•

• • •
•

•
• • • • •

•
•

•
•

• • •
• •

•
• • •

• • • •

• •
• • • • •

• • • • • • • •

•
•

• • • • •

•
• • • • • • •

•

•
• • • • •

• • • • • •
• •

•
•

•
• • • •

• • • •
• • • •

•
•

• • • • •
• • • • • • • •

•
•

• • •
• • • • • • • • • •

•
•

•
• • • •

• • • • • • • •

• •
• • • • •

• • • •
• • • •

•
•

• • • • •
• • • • • • •

•

•
•

• • •
• • • • • • • •

• •

• •
•

• •
• •

• • • • • • • •

•
• • • •

• • • • • • • • • •

•
•

•
•

•
•

•
•

•

•
• •

• •
•

• •
• • • • • • •

• • •
•

•

•

•
• • • • • •

• • • • • • • •

•
• • • •

• •
• • • • •

• •
•

•
• • • • • •

•
• • • • • • •

• •
• • •

•
• • • • • •

• •
•

• • • • •
•

• • • •
• •

• •
•

• • • • • • •
• • • • • •

• •

•
• • • •

• • •
• • • • • • •

•
• • • •

• • •
• • • • • • •

•
• •

• •
•

•
• • • • • • • •

•
•

• •
•

• • • • • • • • • •

•
•

• • • • •
•

• • • • • • •

• • • • • • • • • • • • • •
•

•
• • • • • • •

• • • • • •
•

•
•

• • • • • • • • • • •
•

•

•
• • • • • • • • • • • • • •

• • • • • • • • • • • • • •
•

• • • • • • •
• • • • • • • •

•
• • • • • • • • • •

• •
• •

•
•

•
•

• • •
• • • • • • • •

•
• • •

• • •
• • • • •

• •
•

•
•

• •
• • •

•
• •

• • • •
•

• •
• •

• • •
• • • • • •

• •

•
• • •

• • •
• • • • • •

• •

• • • • • • •
• • • • •

• •
•

• • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •C
u
m

u
la

ti
v
e

F
u
n
ct

io
n

Time (in Months)

Figure 4: Empirical cumulative failure counts of 48 components

series. Figure 4 plots the cumulative number of failures versus time for each
of the 48 computers. There is one “outlying” computer with considerably
more failures. In particular, computer 21 is different in both structure and
usage.

As this is a repairable system, we seek to establish a stochastic point
process, N(a, b), for the number of failures in an interval (a, b]. We further
define N(t) as the number of failures in (0, t]. An important class of models
for failure times of a repairable system is that of the nonhomogeneous Poisson
processes (NHPP). An NHPP is defined by its nonnegative intensity ν(t).
Under an NHPP,

• N(a, b) is a Poisson random variable with mean µ(a, b) =
∫ b

a ν(t)dt

• N(a1, b1) and N(a2, b2) are independent if (a1, b1) and (a2, b2) are dis-
joint (i.e., either b1 < a2 or b2 < a1).

Power Law Process (PLP) and Loglinear Process models are common
choices for the intensity function, ν(t). Ryan and Reese (2005) introduce an
extended model which includes a positive parameter, ρ, to model appropriate
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asymptotic behavior. They consider intensities of the form

ν(t) =
φ

η

(
t

η

)φ−1

+ ρ.

When φ < 1, the system would undergo reliability growth and have a limiting
failure rate of ρ. (The intensity never increases or levels off to a constant
value, regardless of the choice of φ.)

We present a hierarchical Bayesian model for the Poisson process govern-
ing these data. Assume that the number of failures experienced by computer
i in month j, X = [xij] (a C × M matrix), have probability mass function

p(X|η,φ, ρ) =
C∏

i=1

[
M∏

j=1

[{(
tj

ηi

)φi

−
(

t(j − 1)

ηi

)φi

+ tρi

}xij

/xij!

]

× exp

{
−
((

Mt

ηi

)φi

+ Mtρi

)}]
.

Next, allow for a gamma prior distribution on η that is parameterized in
terms of the mean µη and standard deviation ση. That is, use

p(η|µη,ση) =





(
µη

ση
2

)“
µη
ση

”2

Γ

((
µη

ση

)2
)





C

C∏

i=1

[
ηi

“
µη
ση

”2
−1

exp

(
− µη

ση
2
ηi

)]
.

Similarly, let

p(φ|µφ,σφ) =





(
µφ

σφ
2

)
„

µφ
σφ

«2

Γ

((
µφ

σφ

)2
)





C

C∏

i=1

[
φi

„
µφ
σφ

«2

−1
exp

(
− µφ

σφ
2
φi

)]
,

and

p(ρ|µρ,σρ) =





(
µρ

σρ
2

)“
µρ
σρ

”2

Γ

((
µρ

σρ

)2
)





C

C∏

i=1

[
ρi

“
µρ
σρ

”2
−1

exp

(
− µρ

σρ
2
ρi

)]
.
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This hierarchical specification assumes a priori conditional independence of
the computer-specific parameters. This assumption is not as restrictive as
that of complete independence. In fact, a posteriori, the parameters will
reflect dependence as manifest by the data. As such, we are willing to make
this assumption.

The distribution of (η,φ, ρ|µη,ση, µφ,σφ, µρ,σρ) has density

p(η,φ, ρ|µη,ση, µφ,σφ, µρ,σρ) = p(η|µη,ση)p(φ|µφ,σφ)p(ρ|µρ,σρ).

Finally, let

µη ∼ Weibull(aµη , bµη)

ση ∼ Weibull(aση , bση)

µφ ∼ Weibull(aµφ
, bµφ

)

σφ ∼ Weibull(aσφ
, bσφ

)

µρ ∼ Weibull(aµρ , bµρ)

σρ ∼ Weibull(aσρ , bσρ).

For the ith computer, Ni(a, b) is a Poisson random variable with mean
µi(a, b). Thus, the probability that the ith computer has no failures in (a, b)
is

P (Ni(a, b) = 0|φi, ηi, ρi) = 1 − exp

((
a

ηi

)φi

+ ρia −
(

b

ηi

)φi

− ρib

)
.

We use an operational definition of reliability to mean: a job of length l
run on a computer of age s finishes without computer failure. Since the
supercomputer is a series system in its 48 components, reliability R(l, s|Θ) is

R(l, s|Θ) =
48∏

i=1

[
exp

((
s

ηi

)φi

−
(

s + l

ηi

)φi

− ρil

)]
.

Figure 5 summarizes the posterior distribution of reliability R(6, s|Θ) versus
start time s for 6 hour computer runs. The three lines included on this plot
are the 0.05 and 0.95 quantiles and the median of R(6, s|Θ) with respect
to π(Θ|D). As s increases, these three lines increase, indicating reliability
growth.

While this is a simple system example, it illustrates the power of Bayesian
hierarchical models for integrating multiple, similar sources of information to
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Figure 5: Posterior distributions of 6-hour reliability versus start time.
Shown are the posterior median and 0.05 and 0.95 posterior quantiles.

assess overall system reliability. The next example considers a simple system
composed of very different components and the combination of system and
component testing.

3.4 Lifetime Data

As a demonstration of the multiple levels of data collected on a simple system,
consider a system consisting of only three components that are all required
to work in order for the system as a whole to work. An event tree representa-
tion of such a system is pictured in Figure 6. While this is a simple system,
important data combination methods can be illustrated. There are four re-
liability functions of interest, one for each of the three components and one
additional reliability function, which is the system reliability function. Fur-
thermore, suppose that at each component we conduct ni = 20, i = 2, . . . , 4
tests and record the time until failure. We also collect nS = 10 full system
tests independent of the component data and observe the time until failure.
Given this system structure and the test data, we can explore the features
of the proposed Bayesian system reliability modeling.
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Figure 6: Reliability event tree for system reliability

Goodness-of-fit techniques revealed that a reasonable model for the dis-
tribution of failure times of the components is Weibull, that is,

fi(t|Θ) =
αi

βi
(t/βi)

αi exp [− (t/βi)
αi ] , i = 2, 3, 4.

Note this parameterization of the Weibull distribution is different than that in
Section 3.1, with λ0 = (1/βi)α

i and λ1 = αi. Here the component reliabilities
Ri(t|Θ)(i = 2, 3, 4) are given by

∫∞
t f(t|Θ)dt, so that the system reliability at

time t is RS(t|Θ) = R2(t|Θ)R3(t|Θ)R4(t|Θ) Our prior specification is that the
αi and βi are all exchangeable (i.e. independent given their prior parameters)
and are from a common gamma distribution, that is,

p(αi|λa, ζa) ∝ αλa−1
i exp (−ζaαi)

p(βi|λb, ζb) ∝ αλb−1
i exp (−ζbαi) .

Then, to complete the hierarchical specification, we propose that λa, ζa,λb, ζb

have exponential distributions, each with their own rate parameters.
Given the specification above, we use a successive substitution Markov

chain Monte Carlo (MCMC) procedure where each component of the joint
posterior distribution was updated one at a time. The posterior distributions
(as a function of time) for the reliability function of each of the components
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in the example system are presented in Figure 7. They are organized as
upper left, the posterior distribution of the full system C1, upper right, the
posterior distribution for Component C2, lower left, the posterior distribution
for Component C3, and lower right, the posterior distribution for Component
C4.

We note, in particular, that the posterior distribution on the system re-
liability function is less variable than those of any of the components. We
only used 10 system tests and 20 component level tests, suggesting that the
component testing has improved our state of knowledge about the system.
Further, we note that the improvement does not reflect an improvement of
the magnitude expected if we added 60 (or even 20) full system tests. This
would result in a posterior distribution with much less uncertainty. There-
fore, the component testing does not inform the posterior proportionately to
a full system test, but it does improve our knowledge and can be particularly
helpful when full system tests are sparse.

3.5 Elicitation for Reliability

The issues around elicitation for reliability fall into three categories: elic-
itation methodology and techniques, elicitation for parameters and prior
specification in reliability models, and elicitation of system structure and
dependencies. The first two are relatively well-studied; the last is an open
research area.

Kadane and Wolfson (1998) state that, “The goal of elicitation, as we see
it, is to make it as easy as possible for subject-matter experts to tell us what
they believe, in probabilistic terms, while reducing how much they need to
know about probability theory to do so.” There is emerging consensus that
the following represent good technique for parameters and prior elicitation
(Kadane and Wolfson 1998, p. 4):

1. Experts should be asked to assess only observable quantities, condition-
ing only on covariates (which are also observable) or other observable
quantities.

2. Experts should not be asked to estimate moments of a distribution
(except possibly the first moment); they should be asked to assess
quantiles or probabilities of the predictive distribution.
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Figure 7: Posterior distributions (as a function of time) for the reliability
function of each of the components in the system. The upper left panel
is the posterior distribution of the full system C1, the upper right panel is
the posterior distribution for the component C2, the lower left panel is the
posterior distribution for component C3, and the lower right panel is the
posterior distribution for component C4.
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3. Frequent feedback should be given to the expert during the elicitation
process. The feedback can be graphical or verbal, and it should help the
expert develop coherent probabilities and understand the implications
of previous choices.

4. Experts should be asked to give assessments both unconditionally and
conditionally on hypothetical observed data.

The psychological underpinnings of these recommendations are summa-
rized in Meyer and Booker (2001). Specific statistical techniques for deriving
predictive distributions useful in reliability and calculating parameter and hy-
perparameter distributions from elicited quantities can be found in Kadane
and Wolfson (1998), Percy (2002), and Gutiérrez-Pulido et al. (2005). More
detailed elicitation case studies appear in Keeney and von Winderfeldt (1991)
and O’Hagan (1998).

Elicitation of priors for component parameters for systems reliability is
especially difficult because, given a fault tree or reliability block diagram
structure, the prior distributions for parameters at the components induce
prior distributions on the system. For example, suppose that we have a series
system with component reliability pi, and that we assume a Uniform(0, 1)
prior for each pi. This does not imply that there is a uniform prior on the
system itself. Given a series system with k components, the prior distribution
on the system is [Γ(k)]−1(− log p)k−1, which has mean 2−k (Parker 1972). If
the system reliability has a Uniform(0, 1) distribution, and we assume that
each of the k components has the same prior distribution, then this prior

distribution is [Γ(1/k)]−1(− log p)
−(k−1)

k , which has mean 2−1/k.
The elicitation of system structure and dependencies among components

and failure modes is an emerging area of research. Neil et al. (2000), Lee
(2001), and Wilson et al. (2004) discuss the construction of Bayesian net-
works representations (Section 4) for complex systems. Seshasai and Gupta
(2004) discuss the modeling of structure and information within engineering
design process. Klamann and Koehler (2005) propose qualitative methods
for the determination of system structure. The issues are the determination
of the correct granularity for representing components and functionality and
the appropriate dependencies among the components, functions, and failure
modes. Qualitative models of systems that capture these features underlie
the development of quantitative statistical models for systems reliability.
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4 Representing Systems

Fault trees and reliability block diagrams are the most common represen-
tations in system reliability analysis. However, there are situations where
these models do not offer enough flexibility to capture features of the system.
Bayesian networks generalize fault trees and reliability block diagrams by al-
lowing components and subsystems to be related by conditional probabilities
instead of deterministic AND and OR relationships. Flowgraph models are
multistate models that simplify the analysis of time-to-event data.

4.1 Bayesian Networks

There is growing literature on the use of Bayesian networks (BNs) in relia-
bility (e.g., Portinale et al. 2005, Sigurdsson et al. 2001, Lee 2001), although
there is quite a broad literature on using BNs for probabilistic modeling (e.g.,
Spiegelhalter 1998, Neil et al. 2000, Laskey and Mahoney 2000, Jensen 2001).

Formally, a BN is a pair N = 〈(V,E), P 〉, where (V,E) are the nodes and
edges of a directed acyclic graph and P is a probability distribution on V .
Each node contains a random variable, and the directed edges between them
define conditional dependences/independences among the random variables.
Figure 8 summarizes the three probabilistic relationships that can be specified
in a BN. The key feature of a BN is that it specifies the joint distribution P
over the set of nodes V in terms of conditional distributions. In particular,
the joint distribution of V is given by

∏

v∈V

P(v|parents[v]),

where the parents of a node are the set of nodes with an edge pointing to the
node. For example, in the serial structure in Figure 8a, the parent of node
C is node B, and node A has no parents.

BNs can be used as a direct generalization of fault trees. The fault tree
translation to a BN is straightforward, with the basic events that contribute
to an intermediate event represented as parents and a child. Figure 9 shows
the correspondence between a fault tree AND gate and a BN converging
structure. Notice that a fault tree implies specific conditional probabilities.
The same BN converging structure works for an OR gate, with the appro-
priate conditional probabilities.
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Figure 8: Specifying joint probability distributions using a Bayesian network

'(
)*

C

+ ,

'(
)*

A '(
)*

B

'(
)*

C'(
)*

A !

'(
)*

B"

P(C = 1|A = 1, B = 1) = 1
P(C = 1|A = 1, B = 0) = 1
P(C = 1|A = 0, B = 1) = 1
P(C = 1|A = 0, B = 0) = 0

Figure 9: Fault tree conversion to Bayesian network.
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Figure 10: Bayesian network generalization of system example.

Suppose that we have the BN from Figure 10, and suppose that we are
interested in calculating the posterior probability for each component and
the full system. Hamada et al. (2004) discuss how to approach this problem
for the special case of fault trees.

Suppose that we have the same data as given in Section 3.1. However,
instead of a series system, we have the following relationships.

P(S = 1|C1 = 1, C2 = 1, C3 = 1) = 0.9

P(S = 1|C1 = 0, C2 = 1, C3 = 1) = 0.4

P(S = 1|C1 = 1, C2 = 0, C3 = 1) = 0.3

P(S = 1|C1 = 1, C2 = 1, C3 = 0) = 0.5

P(S = 1|C1 = 0, C2 = 0, C3 = 1) = 0.1

P(S = 1|C1 = 1, C2 = 0, C3 = 0) = 0.05

P(S = 1|C1 = 0, C2 = 1, C3 = 0) = 0.25

P(S = 1|C1 = 0, C2 = 0, C3 = 0) = 0

Again, drawing from Section 3.1, let p1(t) = logit−1(θ0 + θ1t), p2(t) =
exp(−λ0tλ1), and p3(t) = {1 − Φ({log t − µ − log(α − D)}/σb)}. Then the
system data can be modeled as Binomial(pS(t)), where

pS(t) = 0.9p1(t)p2(t)p3(t) + 0.4(1 − p1(t))p2(t)p3(t) + 0.3p1(t)(1 − p2(t))p3(t) +

0.5p1(t)p2(t)(1 − p3(t)) + 0.1(1 − p1(t))(1 − p2(t))p3(t) +

0.05p1(t)(1 − p2(t))(1 − p3(t)) + 0.25(1 − p1(t))p2(t)(1 − p3(t)).
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Figure 11: Reliability estimates with uncertainty bands for Bayesian network
example. The solid curve is the posterior mean, and the dotted curves are
the 5th and 95th percentiles of the posterior distribution.

Here we omit the dependence on Θ for space reasons. Figure 11 shows
the posterior distribution for system reliability, with the posterior mean solid
and the 5th and 95th percentiles dotted.

The example given above can easily be generalized to the situation where
the conditional probabilities are not known, but are described by a distribu-
tion. Neil et al. (2000) and Wilson et al. (2004) discuss the construction of
system models for BNs in detail. For additional examples, see Farrow et al.
(1997), Bedford and Cooke (2001), and Portinale et al. (2005).
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Figure 12: Flowgraph model for a series pump system.

4.2 Flowgraph Models

Flowgraph models offer another representation that can be useful in solving
reliability problems. A flowgraph model is one type of multistate model.
It is useful for capturing potential outcomes, probabilities of outcomes, and
waiting times for outcomes to occur, and is often used to model time-to-
event data. Like a graphical model, a flowgraph consists of nodes and arcs.
However, in a flowgraph model, the nodes (or states) represent outcomes.
This differs from a BN, where the nodes represent random variables.

Consider Figure 12 from Huzurbazar (2005). This flowgraph models the
states of a pump system with two pumps. The pumps operate independently,
and the system can operate with one pump if necessary. The nodes of the
system represent states of the system: state 0 represents no failed pumps,
state 1 represents one failed pump, and state 2 represents two failed pumps.
One quantity of interest is the time to total failure, or the total time to
transition from state 0 to state 1 to state 2.

The directed line segments in a flowgraph are branches. Each branch
has a transition probability and waiting time distribution associated with
a transition from its beginning to ending nodes. The branches are labeled
with transmittances, which is the transition probability multiplied by the
moment generating function of the waiting time distribution. For example,
in Figure 12, the transition probability from state 0 to state 1 is 1.0, and the
moment generating function of the waiting time distribution is M01(s). In
Figure 13, the transition probability from state 1 to state 0 is p10 and from
state 1 to state 2 is p12, where p10 + p12 = 1. In this example, there is no
probability of staying in state 1—eventually, a transition always occurs.

Suppose that in Figure 12 the pumps fail independently with an exponen-
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Figure 13: Flowgraph model for a series pump system with feedback.

tial distribution with mean 1/λ0, Exponential(λ0). The transition from state
0 to state 1 happens when either of the pumps fails, which means that its
waiting time is the minimum of two independent exponential distributions,
which has an Exponential(2λ0) distribution.

Once in state 1, we assume that the remaining pump has a failure time
with an Exponential(λ1) distribution, with λ1 > λ0. We assume that λ1 >
λ0 to account for the extra stress on the pump once the first has failed.
The waiting time to transition from state 0 to state 1 to state 2 is the
sum of independent exponential distributions. Since the waiting times are
independent, the moment generating function of the sum of the waiting times
is the product of the individual times. The moment generating function for
an Exponential(λ) is M(s) = λ/(λ − s) for s < λ. The moment generating
function for the transition from state 0 to state 2 is

M02(s) = M01(s)M12(s)

=
2λ0

2λ0 − s

λ1

λ1 − s
.

This moment generating function uniquely determines the distribution of
the waiting time. Since we can now write an equivalent flowgraph with the
transmittance from state 0 to state 2, we have solved the flowgraph from 0
to 2. Huzurbazar (2005) gives a general algorithm based on Mason’s rule
to solve flowgraphs like those in Figure 12 and 13. The moment generat-
ing functions in the transmittances can be converted to probability density
functions (or other summaries, like reliability or hazard functions) either an-
alytically or using saddlepoint approximation techniques. Huzurbazar (2000)
and Huzurbazar (2005) give a number of examples of flowgraph models, solv-
ing flowgraphs, and inverting flowgraph moment generating functions.
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5 Resource Allocation

Sections 2 and 3 considered the analysis of various sources of component data
and a mix of component and system data, respectively, to assess system reli-
ability. In this section, we address how to allocate limited testing resources;
we simply refer to this problem as resource allocation (Hamada et al. 2004).
That is, given a limited budget, where should additional tests be done (at
the system level and/or the component level) and how many tests should be
done there?

First, we assume that there is a cost for collecting additional data, and
that it is more costly to collect higher-level (e.g., system) data than lower-
level (e.g., component) data. For specified costs, a candidate allocation, i.e.,
the number of tests at the system level and at all the components, must not
exceed a fixed budget.

Next, we need a criterion with which to evaluate a candidate allocation
and to compare between two different candidate allocations. We use one
based on repeated pre-posterior analyses. The fact that we can analyze the
varied data presented in Sections 2 and 3 allows us to take such an ap-
proach. The criterion can be described operationally as follows. We draw
from the parameter prior distribution (based on the existing data), simulate
data according to the candidate allocation using the current prior draw as
the true parameters, and then update with the simulated data to obtain
the parameter posterior distribution. Using this parameter posterior distri-
bution, we evaluate the system reliability posterior distribution and record
some distributional characteristic. For example, we often use the length of
the central 90% credible interval as measure of uncertainty that we would like
to reduce. Repeating this procedure produces an empirical distribution of
posterior credible interval lengths. As a criterion for the candidate allocation,
we use an upper quantile, e.g., the 0.90 quantile.

Finally, we need to find the candidate allocation that optimizes, in this
case minimizes, the criterion. To do the optimization problem, we can use
a genetic algorithm (GA) (Goldberg 1989). We have implemented a GA for
resource allocation in R (R Development Core Team 2004) which generates
the candidate allocations. A candidate allocation is also evaluated in R by
repeatedly generating data sets and calling YADAS (Graves 2003a, 2003b)
to do the Bayesian updating. YADAS produces an output file of parameter
posterior draws, which is read into R to calculate the candidate allocation
criterion.

27



Full
System

C1

! "
#

$

%

&
Component

C2

#

$

%

&
Component

C3

Figure 14: Event tree for a two-component series system.

In the remainder of this section, we consider the case where there are
only binomial count data at the system and component level. We illustrate
resource allocation for a simple series system consisting of two components
as displayed in Figure 14 as an event tree.

Johnson et al. (2003) showed how to combine system and component level
binomial data in a reliability assessment. For example, if the series system
structure in Figure 14 is valid and the components are independent, then the
system reliability p1 equals p2p3, the product of the two component reliabil-
ities. Consequently, system level data are informative about the component
reliabilities through this relationship.

Let TCi be the corresponding costs: TC1 the cost of a system test, and
TC2 and TC3 are the components costs. Let ni be the corresponding number
of tests so that for budget B,

∑3
i=1 TCini ≤ B.

Under this scenario where the system structure (i.e., series) holds and bi-
nomial count data are collected, resource allocation depends on these costs.
If TC1 ≥ TC2 + TC3, then the optimal allocation will consist only of com-
ponent tests. Even if TC1 = TC2 + TC3, there is still more information
gained from individual component tests than one system test. That is, do-
ing one system test as compared with testing each component once provides
less information. If TC1 = TC2 = TC3, then the optimal allocation is all
system tests. If TC1 < TC2 + TC3, there must be a mixture of system and
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component tests, but trying to characterize this mixture remains to be done.
An important reason for performing system tests is that they are integra-

tive, which in the above discussion was not accounted for. That is, does the
system work when all the components are assembled? Consequently, system
tests are needed to assess the assumed structure. The previously stated rela-
tionship between the system and component reliabilities for the simple series
system,

p1 = p2p3,

assumes that the series structure with independence holds. To allow for the
possibility that the assumed structure does not hold perfectly, consider the
following relationship

p1 = p2p3/[p2p3 + (1 − p2p3) exp(−β)]. (3)

Here β is a bias term for which β = 0 means that the series structure
with independent components holds; also, for β < 0, p1 < p2p3 and for
β > 0, p1 > p2p3. Note that if a specific departure from the assumed system
structure is of interest, the departure can be accommodated. For example,
if there is a possible additional failure mode due to common causes, the
relationship given in Mosleh (1991) can be used.

For resource allocation, we see from (3) that to reduce the uncertainty
about the system reliability p1, the uncertainty of the bias term β also needs
to be reduced. To do this requires some system tests.

Consider resource allocation when the assumed system structure may not
hold for the following problem:

• The existing data consist of 2 system tests (both successes), 5 compo-
nent 1 tests (5 successes) and 10 component 2 tests (9 successes).

• Prior distributions on the component reliabilities and bias term β are
taken to be diffuse. Combined with the existing data listed above, the
90% credible intervals based on the resource allocation prior distribu-
tions are (0.83, 1.00) for the component 1 reliability, (0.77, 0.98) for
the component 2 reliability, and (-1.56, 2.75) for the bias term.

• The resulting resource allocation prior distribution for the system reli-
ability has a 90% credible interval of (0.579, 0.992). Consequently, the
length of the initial 90% credible interval for system reliability is 0.413.
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For a budget B = 2500 and costs TC1 = 30 and TC2 = TC3 = 1, the
optimal allocation (based on evaluating 2000 candidate allocations using a
GA) is to do as many system tests (i.e., 83) as possible. An allocation of
(n1, n2, n3) = (83, 10, 0) yields a value of 0.160 based on 1000 generated data
sets with 10000 posterior draws per data analysis. For this case, we see that
in spite of the system test cost being much larger than the component test
costs, the entire budget is essentially spent on system tests. If initially, there
is less uncertainty about the bias term, we expect there to be an allocation
between system and components tests; recall that the no bias case presented
above allocated the budget entirely to component tests.

More study of resource allocation for more complicated systems is needed.
On the other hand, for a specific situation one need employ an optimization
algorithm such as the GA we used in this example, to find an optimal allo-
cation.

6 Discussion

In this paper, we hope that we have conveyed the importance of the role that
statisticians can play in assessing system reliability today, and the many
research challenges that it presents. Somewhat facetiously, we thought of
titling this paper as “This ain’t your father’s reliability!” or “System reli-
ability assessment—a statistician’s playground!,” because both express the
excitement that we have about the research challenges in this field.

As Sections 2 and 3 showed, novel statistical models arise when statis-
ticians want to leverage information from all available data to bear in an
assessment. Even assessing a single component can be challenging when the
data are from computer experiments (Santner et al. 2003) in which verifica-
tion, validation, and calibration need to be addressed, and where multiscale
physical experiments and historical system tests with multiple measurement
errors must be integrated. Moreover, as much engineering and science knowl-
edge as possible needs to be incorporated in the statistical modeling.

Section 3 presented some of the challenges in incorporating multi-level
data from various sources in an assessment. Another example occurs when
the data come from different tests at different levels, some of which are done
at more severe conditions than that experienced in normal use (Reese et al.
2005). Section 3.5 also discussed elicitation of expert knowledge. This is
critical in capturing both the functional and physical structure of a system,
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and more research is needed on techniques and tools for carrying out this
activity.

In Section 4, richer representations than fault trees and reliability block
diagrams were presented. More research is needed on statistical inference
with these representations. Section 5 presented the emerging problem of re-
source allocation. There are many interesting problems beyond the binomial
case. For example, in an accelerated degradation data experiment on a sin-
gle component, one needs to determine how much of the budget should be
spent on this experiment and subsequently, what levels of the accelerating
variable should be studied, how many units should be tested at each level,
and how often should the units be inspected. There is much research here
that remains to be done.

Implementation of reliability assessment in large systems is an issue and
tools are needed which is a research effort in itself. Our organization (Statis-
tical Sciences Group at Los Alamos National Laboratory) is developing qual-
itative system representation tools such as GROMIT (Klamann and Koehler
2005) and statistical modeling tools such as YADAS (Graves 2003a, 2003b)
as well as an interface between them. But many challenges remain. For ex-
ample, system reliability assessments are computationally intensive. What
approximations can be incorporated without sacrificing accuracy? Or do we
need the power of a supercomputer? Resource allocation is even more com-
putationally intensive and brings the issues of computation to the forefront.
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